時間:2022-01-26 18:12:36
序論:在您撰寫八年級數(shù)學上冊教案時,參考他人的優(yōu)秀作品可以開闊視野,小編為您整理的7篇范文,希望這些建議能夠激發(fā)您的創(chuàng)作熱情,引導(dǎo)您走向新的創(chuàng)作高度。
提高學習效率并非一朝一夕之事,需要長期的探索和積累。前人的經(jīng)驗是可以借鑒的,但必須充分結(jié)合自己的特點。下面就是小編為大家梳理歸納的內(nèi)容,希望能夠幫助到大家。
教學目標:
知識與技能目標:
1.掌握矩形的概念、性質(zhì)和判別條件。
2.提高對矩形的性質(zhì)和判別在實際生活中的應(yīng)用能力。
過程與方法目標:
1.經(jīng)歷探索矩形的有關(guān)性質(zhì)和判別條件的過程,在直觀操作活動和簡單的說理過程中發(fā)展學生的合情推理能力,主觀探索習慣,逐步掌握說理的基本方法。
2.知道解決矩形問題的基本思想是化為三角形問題來解決,滲透轉(zhuǎn)化歸思想。
情感與態(tài)度目標:
1.在操作活動過程中,加深對矩形的的認識,并以此激發(fā)學生的探索精神。
2.通過對矩形的探索學習,體會它的內(nèi)在美和應(yīng)用美。
教學重點:矩形的性質(zhì)和常用判別方法的理解和掌握。
教學難點:矩形的性質(zhì)和常用判別方法的綜合應(yīng)用。
教學方法:分析啟發(fā)法
教具準備:像框,平行四邊形框架教具,多媒體課件。
教學過程設(shè)計:
一、情境導(dǎo)入:
演示平行四邊形活動框架,引入課題。
二、講授新課:
1.歸納矩形的定義:
問題:從上面的演示過程可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?(學生思考、回答。)
結(jié)論:有一個內(nèi)角是直角的平行四邊形是矩形。
2.探究矩形的性質(zhì):
(1)問題:像框除了“有一個內(nèi)角是直角”外,還具有哪些一般平行四邊形不具備的性質(zhì)?(學生思考、回答.)
結(jié)論:矩形的四個角都是直角。
(2)探索矩形對角線的性質(zhì):
讓學生進行如下操作后,思考以下問題:(幻燈片展示)
在一個平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個頂點上,拉動一對不相鄰的頂點,改變平行四邊形的形狀.
①隨著∠α的變化,兩條對角線的長度分別是怎樣變化的?
②當∠α是銳角時,兩條對角線的長度有什么關(guān)系?當∠α是鈍角時呢?
③當∠α是直角時,平行四邊形變成矩形,此時兩條對角線的長度有什么關(guān)系?
(學生操作,思考、交流、歸納。)
結(jié)論:矩形的兩條對角線相等.
(3)議一議:(展示問題,引導(dǎo)學生討論解決)
①矩形是軸對稱圖形嗎?如果是,它有幾條對稱軸?如果不是,簡述你的理由.
②直角三角形斜邊上的中線等于斜邊長的一半,你能用矩形的有關(guān)性質(zhì)解釋這結(jié)論嗎?
(4)歸納矩形的性質(zhì):(引導(dǎo)學生歸納,并體會矩形的“對稱美”)
矩形的對邊平行且相等;矩形的四個角都是直角;矩形的對角線相等且互相平分;矩形是軸對稱圖形.
例解:(性質(zhì)的運用,滲透矩形對角線的“化歸”功能)
如圖,在矩形ABCD中,兩條對角線AC,BD相交于點O,AB=OA=4
厘米,求BD與AD的長。
(引導(dǎo)學生分析、解答)
探索矩形的判別條件:(由修理桌子引出)
(5)想一想:(學生討論、交流、共同學習)
對角線相等的平行四邊形是怎樣的四邊形?為什么?
結(jié)論:對角線相等的平行四邊形是矩形.
(理由可由師生共同分析,然后用幻燈片展示完整過程.)
(6)歸納矩形的判別方法:(引導(dǎo)學生歸納)
有一個內(nèi)角是直角的平行四邊形是矩形.
對角線相等的平行四邊形是矩形.
三、課堂練習:(出示P98隨堂練習題,學生思考、解答。)
四、新課小結(jié):
通過本節(jié)課的學習,你有什么收獲?
(師生共同從知識與思想方法兩方面小結(jié)。)
五、作業(yè)設(shè)計:P99習題4.6第1、2、3題。
板書設(shè)計:
1.矩形
矩形的定義:
矩形的性質(zhì):
前面知識的小系統(tǒng)圖示:
2.矩形的判別條件:
例1
課后反思:在平行四邊形及菱形的教學后。學生已經(jīng)學會自主探索的方法,自己動手猜想驗證一些矩形的特殊性質(zhì)。一些相關(guān)矩形的計算也學會應(yīng)用轉(zhuǎn)化為直角三角形的方法來解決。總的看來這節(jié)課學生掌握的還不錯。當然合情推理的能力要慢慢的熟練。不可能一下就掌握熟練。
教學目標:
情意目標:培養(yǎng)學生團結(jié)協(xié)作的精神,體驗探究成功的樂趣。
能力目標:能利用等腰梯形的性質(zhì)解簡單的幾何計算、證明題;培養(yǎng)學生探究問題、自主學習的能力。
認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。
教學重點、難點
重點:等腰梯形性質(zhì)的探索;
難點:梯形中輔助線的添加。
教學課件:PowerPoint演示文稿
教學方法:啟發(fā)法、
學習方法:討論法、合作法、練習法
教學過程:
(一)導(dǎo)入
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習:下列圖形中哪些圖形是梯形?(投影)
4、總結(jié)梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。
(投影)
6、特殊梯形的.分類:(投影)
(二)等腰梯形性質(zhì)的探究
【探究性質(zhì)一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個內(nèi)角相等。
【操練】
(1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
(2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質(zhì)二】
如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質(zhì):等腰梯形的兩條對角線相等。
【探究性質(zhì)三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)
問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)
等腰梯形性質(zhì):同以底上的兩個內(nèi)角相等,對角線相等
(三)質(zhì)疑反思、小結(jié)
讓學生回顧本課教學內(nèi)容,并提出尚存問題;
學生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對角線、對稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
人教版八年級上冊數(shù)學教案《因式分解》教案
教學目標:
1、理解運用平方差公式分解因式的方法。
2、掌握提公因式法和平方差公式分解因式的綜合運用。
3、進一步培養(yǎng)學生綜合、分析數(shù)學問題的能力。
教學重點:
運用平方差公式分解因式。
教學難點:
高次指數(shù)的轉(zhuǎn)化,提公因式法,平方差公式的靈活運用。
教學案例:
我們數(shù)學組的觀課議課主題:
1、關(guān)注學生的合作交流
2、如何使學困生能積極參與課堂交流。
在精心備課過程中,我設(shè)計了這樣的自學提示:
1、整式乘法中的平方差公式是___,如何用語言描述?把上述公式反過來就得到_____,如何用語言描述?
2、下列多項式能用平方差公式分解因式嗎?若能,請寫出分解過程,若不能,說出為什么?
①-x2+y2②-x2-y2③4-9x2
④(x+y)2-(x-y)2⑤a4-b4
3、試總結(jié)運用平方差公式因式分解的條件是什么?
4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?
5、試總結(jié)因式分解的步驟是什么?
師巡回指導(dǎo),生自主探究后交流合作。
生交流熱情很高,但把全部問題分析完已用了30分鐘。
生展示自學成果。
生1:-x2+y2能用平方差公式分解,可分解為(y+x)(y-x)
生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)
師:這兩種方法都可以,但第二種方法提出負號后,一定要注意括號里的各項要變號。
生3:4-9x2也能用平方差公式分解,可分解為(2+9x)(2-9x)
生4:不對,應(yīng)分解為(2+3x)(2-3x),要運用平方差公式必須化為兩個數(shù)或整式的平方差的形式。
生5:a4-b4可分解為(a2+b2)(a2-b2)
生6:不對,a2-b2還能繼續(xù)分解為a+b)(a-b)
師:大家爭論的很好,運用平方差公式分解因式,必須化為兩個數(shù)或兩個整式的平方的差的形式,另因式分解必須分解到不能再分解為止。……
反思:這節(jié)課我備課比較認真,自學提示的設(shè)計也動了一番腦筋,為讓學生順利得出運用平方差公式因式分解的'條件,我設(shè)計了問題2,為讓學生能更容易總結(jié)因式分解的步驟,我又設(shè)計了問題4,自認為,本節(jié)課一定會上的非常成功,學生的交流、合作,自學展示一定會很精彩,結(jié)果卻出乎我的意料,本節(jié)課沒有按計劃完成教學任務(wù),學生練習很少,作業(yè)有很大一部分同學不能獨立完成,反思這節(jié)課主要有以下幾個問題:
(1)我在備課時,過高估計了學生的能力,問題2中的③、④、⑤多數(shù)學生剛預(yù)習后不能熟練解答,導(dǎo)致在小組交流時,多數(shù)學生都在交流這幾題該怎樣分解,耽誤了寶貴的時間,也分散了學生的注意力,導(dǎo)致難點、重點不突出,若能把問題2改為:
下列多項式能用平方差公式因式分解嗎?為什么?可能效果會更好。
(2)教師備課時,要考慮學生的知識層次,能力水平,真正把學生放在第一位,要考慮學生的接受能力,安排習題要循序漸進,切莫過于心急,過分追求課堂容量、習題類型全等等,例如在問題2的設(shè)計時可寫一些簡單的,像④、⑤可到練習時再出現(xiàn),發(fā)現(xiàn)問題后再強調(diào)、歸納,效果也可能會更好。
我及時調(diào)整了自學提示的內(nèi)容,在另一個班也上了這節(jié)課。果然,學生的討論有了重點,很快(大約10分鐘)便合作得出了結(jié)論,課堂氣氛非常活躍,練習量大,準確率高,但隨之我又發(fā)現(xiàn)我在處理課后練習時有點不能應(yīng)對自如。例如:師:下面我們把課后練習做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來:“我們再做幾題試試?!鄙珠_始緊張地練習……下課后,無意間發(fā)現(xiàn)竟還有好幾個同學課后題沒做。原因是預(yù)習時不會,上課又沒時間,還有幾位同學練習題竟然有誤,也沒改正,原因是上課慌著展示自己,沒顧上改……。看來,以后上課不能單聽學生的齊答,要發(fā)揮組長的職責,注重過關(guān)落實。給學生一點機動時間,讓學習有困難的學生有機會釋疑,練習不在于多,要注意融會貫通,會舉一反三。
1.1認識三角形
1、(1)ABD,ADC,ABC
(2)∠B,∠BAD,∠ADB;AB,AD,BD
(3)85,55
2、(1)<
(2)>
3、(1)2
(2)3
(3)1
4、(1)能
(2)不能
(3)不能
(4)能
5、有兩種不同選法:4cm,9cm,10cm;5cm,9cm,10cm
*6、有兩種不同的擺法,各邊的火柴棒根數(shù)分別為2,4,4;3,3,4
1.2定義與命題
1、C
2、C
3、(1)如果兩直線平行,那么內(nèi)錯角相等
(2)如果一個數(shù)是無限小數(shù),那么它是個無理數(shù)
4、(1)(2)(3)(4)(5)(8)是命題;(6)(7)不是命題
5、答案不,如:如果兩條直線平行,那么同位角相等;如果a>b,b>c,那么a>c
6、三角形中有兩條邊相等(或有兩個角相等),有兩條邊相等(或有兩個角相等)的三角形叫做等腰三角形
1.3證明
1、已知;兩直線平行,內(nèi)錯角相等;已知;AED,2;內(nèi)錯角相等,兩直線平行
2、由∠ACB=90°,得∠A+∠B=90°.
由CDAB,得∠B+∠DCB=90°,從而∠A=∠DCB
3、由已知得½(∠EFC+∠AEF)=90°,即∠EFC+∠AEF=180°,得AB∥CD
4、由DE∥BC,得∠CDE=∠DCB。由FG∥CD,得∠DCB=∠BGF
∠CDE=∠BGF
第5頁—第7頁
選擇題
1B2C3C4B5B6A7B8D
填空
(1)1(2)y=2x+1-1(3)m<2n<3(4)y=-3x+3
(5)y=x+3(6)y=64x+48(7)S=2n+1(8)y=1/5x-630
解答題
(1)設(shè)y=kx+b
-4k+b=15
6k+b=-5
k=-2b=7
y=-2x+7
(2)略
(3)①表示y與x的關(guān)系,x為自變量
②10時離家10km13時離家30km
③12時-13時,離家30km
④13km
⑤2時-13時
⑥15km/h
第9頁—第11頁
1.選擇題
(1)A(2)C(3)C
2.填空
(1)y=-2x(2)m<2(3)y=5x+3(4)y2>y1(5)y=-2x+10025
(6)9
3.解答題
(1)①Q(mào)=200+20t②(0≤t≤30)
(2)①y=80(0≤x≤50)
y=1.9x-15(50≤x≤100)
②y=1.6x
③選擇方式一
(3)①在同一直線上y=25/72x
②當x=72時,y=25
當x=144時,y=50
當x=216時,y=75
y=25/72x(0≤x≤345.6)
③當x=158.4時,y=25/72x158.4=55
(4)①y甲=2x+180
y乙=2.5x+140
②當x=100時,y甲=200+180=380
Y乙=140+250=390
380〈390
租甲車更活算
第13頁—第15頁
1.選擇題
(1)D(2)C(3)C
2.填空
(1)x=2
y=3
(2)x=2x>2
(3)-3-2x=-5/8y=-1/8
(4)1/20x=2
y=3
(5)y=5/4x
2.解答題
3.(1)略
(2)①依題意
-k+b=-5
2k+b=1
解得
k=2b=-3
y=2x+3
當y≥0時
2x-3≥0,x≥3/2
②當x<2時,2x<4
則2x-3<1
即y<1
(3)①y會員卡=0.35+15
y租書卡=0.5x
②若y會員卡〈y租書卡
則0.35x+15<0.5x
x>100
租書超過100天,會員卡比租書卡更合算
(4)設(shè)A(m,n)
1/2x4xm=6
m=3
n=2
A(-3,-2)
y=2/3x,y=-2/3x-4
(5)①y甲=0.8x1.5X+900=1.2x+900(x≥500)
Y乙=1.5x+900x0.6=1.5x+540(x≥500)
②若y甲=y乙
1.2x+900=1.5x+540
x=1200
當x<1200時,選擇乙廠
當x=1200時,兩廠收費一樣
當x〉1200時,選擇甲廠
2000>1200,選擇甲廠
y甲=1.2x2000+900=3300
第17頁—第19頁
1.選擇題
(1)C(2)D(3)C
2.填空
(1)630(2)0.170.17(3)35(4)①238.1824②12.9③2萬
3解答題
(1)
①七大洲亞洲
②亞洲和非洲
③100%
④大洋洲
⑤不能
(2)①一車間第四季度
②一車間二車間
③①是圖(1)得出的②是圖(2)得出的
(3)①48②0.25③哪一個分數(shù)段的學生最多?70.5~80.5的學生最多。
第21頁—第23頁
1.選擇題
(1)B(2)B(3)C(4)B
2.填空
(1)20%30%25%25%(2)扁形36%115.2度(3)411
3解答題
(1)
縣ABCDEF
人口(萬)9015722737771
百分比12.9%2.1%10.3%39.1%11.0%24.5%
圓心角度數(shù)46.47.737.1140.839.788.2
(2)圖略
(3)身高(cm)頻數(shù)
154.5~159.52
159.5~164.54
164.5~169.56
169.5~174.510
174.5~179.55
179.5~184.53
(4)圖略結(jié)論:只有少數(shù)人對自己工作不滿。
(5)①200.16②略
第25頁—第27頁
1.選擇題
(1)B(2)C(3)A(4)C(5)B(6)C
2.填空
(1)∠D∠CDCODOC(2)DECDE∠D600
(3)∠CADCD(4)50010108(5)ADECAE
3解答題
(1)①DCE可以看作是ABF平移旋轉(zhuǎn)得到的
②AF不一定與DE平行,因為∠AFE不一定等于∠D
(2)∠ABC=1800x5/18=500
∠C=1800x3/18=300
∠B’CB=∠A+∠ABC=800
ABC≌A’B’C’
∠A’=∠A=300
∠B’=∠ABC=500
∠B’BC=1800-∠B’-∠B’CB=500
(3)①略②分別取各邊中點,兩兩連接即可.
(4)延長AD至E,使AD=DE,連接BE
AD=ED
D為BC的中點
在BDE和CDA中
BD=CD∠ADC=∠BDEDE=DA
BDE≌CDA
BE=AC
AE
AD
第29頁—第31頁
選擇題
(1)D(2)B(3)B(4)C
2.填空
(1)6(2)200(3)BO=CO(4)AB=DC∠ACB=∠DBC
3.解答題
(1)AE=CF
AE+EF=CF+EF
AF=CE
CD=ABDE=BFCE=AF
CDE≌ABF
∠DEC=∠AFB
DEBF
(2)ABE≌ACG
ABD≌ACF
AB=AC
∠ABC=∠ACB
BD平分∠ABC,CF平分∠ACB
∠ABD=∠ACF
∠BAF=∠BAF
AB=AC
ABD≌ACF
(3)BA=BC
AB=BC
∠B=∠B
BE=BD
BEA≌BDC
(4)
證明EH=FHDH=DHDE=DF
DEH≌DFH
∠DEH=∠DFH
(5)①證明∠BCA=∠ECD
∠BCA-∠ACE=∠ECD-∠ACE
即∠BCE=∠ACD
EC=DCBC=AD
BEC≌ADC
BE=AD
第2章2.1第1課時三角形的有關(guān)概念答案
課前預(yù)習
一、直線;首尾
三、1、等腰三角形
2、相等
四、大于
課堂探究
【例1】思路導(dǎo)引答案:
1、1
2、2
變式訓(xùn)練1-1:C
變式訓(xùn)練1-2:B
【例2】思路導(dǎo)引答案:
1、2;8
2、4、6;C
變式訓(xùn)練2-1:B
變式訓(xùn)練2-2:B
課堂訓(xùn)練
1~2:A;B
3、2或3或4
4、11或13
第十一章11.2.1三角形的內(nèi)角答案
1、直角三角形
2、60°
3、115
4、125
5、解:設(shè)一個角的度數(shù)為x,第二個角為6x,第三個角為7x-44°
由三角形內(nèi)角和性質(zhì)得
x+6x+7x-44°=180°
解得x=16°
所以角是96°
6、解:AB∥CD,
∠AFC=45°,
∠EFC=135°,
∠C+∠E=45°,
又∠C=∠E,
∠C=∠E=22.5°
第十一章11.2.2三角形的外角(1)答案
1、65°
2、120°
3、>
4、360°
5、答:命題正確。
∠BDE是∆DEC的外角,則有∠BDE=∠DCE+∠E;
同理,∠DCE=∠A+∠B,
所以∠BDE=∠E+∠A+∠B
6、解:(1)∠F=(∠B+∠D)
由題意可知∠DEG=∠GEA=∠DEA,
∠ACF=∠FCB=∠ACB
在∆DEG和∆FGC中,
由于∠DGE=∠FGC(對頂角相等),
則有∠F+∠ACF=∠D+∠DEG,
即∠F+∠ACB=∠D+∠DEA
同理可得∠F+∠DEA=∠B+∠ACB,
可得∠F=(∠B+∠D)
(2)x的值為3
第十一章11.2.2三角形的外角(2)答案
1、直角三角形
2、20°
3、70
4、75°
5、解:∠DAC=∠BAC-∠1=63°-∠1,
∠DAC=180°-∠3-∠4=180-2∠3,
而∠3=∠1+∠2=2∠1,
∠DAC=63°-∠1
∠DAC=180°-4∠1,
求∠1=39°,
§17.1分式及其基本性質(zhì)(二)
一、選擇題.1.C2.D
二、填空題.1.,2.3.三、解答題.1.(1),(2),(3),(4)2.(1),,;(2),3.
§17.2分式的運算(一)
一、選擇題.1.D2.A
二、填空題.1.,2.3.三、解答題.1.(1),(2),(3),(4);2.,§17.2分式的運算(二)
一、選擇題.1.D2.B
二、填空題.1.,2.1,3.三、解答題.1.(1),(2),(3)x,(4)2.,當時,17.3可化為一元一次方程的分式方程(一)
一、選擇題.1.C2.B
二、填空題.1.,2.,3.三、解答題.1.(1),(2),(3),(4),原方程無解;
2.17.3可化為一元一次方程的分式方程(二)
一、選擇題.1.C2.D
二、填空題.1.,,2.,3.三、解答題.1.第一次捐款的人數(shù)是400人,第二次捐款的人數(shù)是800人
2.甲的速度為60千米/小時,乙的速度為80千米/小時
17.4零指數(shù)與負整數(shù)指數(shù)(一)
一、選擇題.1.B2.D
二、填空題.1.0.001,0.0028,2.,3.三、解答題.1.(1)1,(2),(3)2010,(4)9,(5),(6)2.(1)0.0001,(2)0.016,(3)0.000025,(4)17.4零指數(shù)與負整數(shù)指數(shù)(二)
一、選擇題(每題3分,共30分)1、在ABC和DEF中,AB=DE, ∠B=∠E,如果補充一個條件后不一定能使ABC≌DEF,則補充的條件是( )A、BC=EF B、∠A=∠D C、AC=DF D、∠C=∠F2、下列命題中正確個數(shù)為( )①全等三角形對應(yīng)邊相等;②三個角對應(yīng)相等的兩個三角形全等;③三邊對應(yīng)相等的兩個三角形全等;④有兩邊對應(yīng)相等的兩個三角形全等. A.4個 B、3個 C、2個 D、1個3、已知ABC≌DEF,∠A=80°,∠E=40°,則∠F等于 ( )A、 80° B、40° C、 120° D、 60°4、已知等腰三角形其中一個內(nèi)角為70°,那么這個等腰三角形的頂角度數(shù)為( ) A、70° B、70°或55° C、40°或55° D、70°或40°5、如右圖,圖中顯示的是從鏡子中看到背后墻上的電子鐘讀數(shù),由此你可以推斷這時的實際時間是( )A、10:05 B、20:01 C、20:10 D、10:026、等腰三角形底邊上的高為腰的一半,則它的頂角為( )A、120° B、90° C、100° D、60°7、點P(1,-2)關(guān)于x軸的對稱點是P1,P1關(guān)于y軸的對稱點坐標是P2,則P2的坐標為( )A、(1,-2) B、(-1,2) C、(-1,-2) D、(-2,-1)8、已知 =0,求yx的值( )A、-1 B、-2 C、1 D、29、如圖,DE是ABC中AC邊上的垂直平分線,如果BC=8cm,AB=10cm,則EBC的周長為( )A、16 cm B、18cm C、26cm D、28cm10、如圖,在ABC中,AB=AC,AD是BC邊上的高,點E、F是AD的三等分點,若ABC的面積為12 ,則圖中陰影部分的面積為( )A、2cm ² B、4cm² C、6cm² D、8cm²二、填空題(每題4分,共20分)11、等腰三角形的對稱軸有 條.12、(-0.7)²的平方根是 .13、若 ,則x-y= .14、如圖,在ABC中,∠C=90°AD平分∠BAC,BC=10cm,BD=6cm,則點D到AB的距離為__ .15、如圖,ABE≌ACD,∠ADB=105°,∠B=60°則∠BAE= .三、作圖題(6分)16、如圖,A、B兩村在一條小河的同一側(cè),要在河邊建一水廠向兩村供水.(1)若要使自來水廠到兩村的距離相等,廠址P應(yīng)選在哪個位置?(2)若要使自來水廠到兩村的輸水管用料最省,廠址Q應(yīng)選在哪個位置?請將上述兩種情況下的自來水廠廠址標出,并保留作圖痕跡. 四、求下列x的值(8分)17、 27x³=-343 18、 (3x-1)²=(-3)²
五、解答題(5分)19、已知5+ 的小數(shù)部分為a,5- 的小數(shù)部分為b,求 (a+b)2012的值。 六、證明題(共32分) 20、(6分)已知:如圖 AE=AC, AD=AB,∠EAC=∠DAB.求證:EAD≌CAB. 21、(7分)已知:如圖,在ABC中,AB=AC,∠BAC=120o,AC的垂直平分線EF交AC于點E,交BC于點F。求證:BF=2CF。22、(8分)已知:E是∠AOB的平分線上一點,ECOA ,EDOB ,垂足分別為C、D.求證:(1)∠ECD=∠EDC ;(2)OE是CD的垂直平分線。
23、(10分)(1)如圖(1)點P是等腰三角形ABC底邊BC上的一動點,過點P作BC的垂線,交AB于點Q,交CA的延長線于點R。請觀察AR與AQ,它們相等嗎?并證明你的猜想。(2)如圖(2)如果點P沿著底邊BC所在的直線,按由C向B的方向運動到CB的延長線上時,(1)中所得的結(jié)論還成立嗎?請你在圖 (2)中完成圖形,并給予證明。
一、選擇題(每題3分,共30分)C C D D B A B C B C二、填空題(每題3分,共15分)11、1或3 12、±0.7 13、2 14、4cm 15、45°三、作圖題(共6分)16、(1)如圖點P即為滿足要求的點…………………3分(2)如圖點Q即為滿足要求的點…………………3分 四、求下列x的值(8分) 17、解:x³= ………………………………2分 x= …………………………………2分 18、解:3x-1=±3…………………………………2分①3x-1=3x= ……………………………………1分②3x-1=-2 x= ……………………………………1分五、解答題(7分)19、依題意,得,a=5+ -8= -3……………2分b=5- -1=4- ……………2分a+b= -3+4- =1…………2分 = =1…………………1分六、證明題(共34分)20、(6分)證明:∠EAC=∠DAB ∠EAC+∠DAC=∠DAB+∠DAC 即∠EAD=∠BAC………………2分在EAD和CAB中, ……………3分EAD=CAB(SAS)…………1分
21、(7分)解:連接AF ∠BAC=120°AB=AC∠B=∠C=30°………………1分FE是AC的垂直平分線AF=CF ∠FAC=30°…………………2分∠BAF=∠BAC-∠CAF=120°-30°=90°……………………1分又∠B=30°AB=2AF…………………………2分AB=2CF…………………………1分22、(9分)證明:(1)OE平分∠AOB ECOA EDOB DE=CE………………………2分∠EDC=∠ECD………………1分(2)∠EDC=∠ECD EDC是等腰三角形∠DOE=∠CDE………………………………1分∠DEO=∠CEO………………………………1分OE是∠DEC的角平分線…………………2分即DE是CD的垂直平分線…………………2分23、(12分)解:(1)AR=AQ…………………………………………1分ABC是等腰三角形∠B=∠C……………………………………1分RPBC∠C+∠R=90°∠B=∠PQB=90°………………………………1分∠PQB=∠R……………………………………1分又∠PQB=∠AQR ∠R=∠AQR……………………………………1分AQ=AR…………………………………………1分(2)成立,依舊有AR=AQ………………………1分補充的圖如圖所示………………1分ABC為等腰三角形∠C=∠ABC………………1分PQPC∠C+∠R=90°∠Q+∠PBQ=90°…………1分PBQ=∠ABC∠R=∠Q…………………1分AR=AQ……………………1分