時間:2023-04-10 15:16:14
序論:在您撰寫數(shù)學(xué)概率統(tǒng)計論文時,參考他人的優(yōu)秀作品可以開闊視野,小編為您整理的7篇范文,希望這些建議能夠激發(fā)您的創(chuàng)作熱情,引導(dǎo)您走向新的創(chuàng)作高度。
如本校數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)和信息與計算科學(xué)專業(yè),該課程實踐教學(xué)主要是利用計算機對理論知識的模擬和實證。這樣的實踐教學(xué)對理論知識的理解有一定的幫助,但對于實際的運用卻缺少訓(xùn)練?;诖耍趯嵺`教學(xué)過程中,我們設(shè)計了一些與專業(yè)實踐應(yīng)用相結(jié)合的實踐教學(xué)內(nèi)容,并在教學(xué)中嘗試使用,取得了良好的效果。
二、設(shè)計思路
1.實驗內(nèi)容與專業(yè)特點相結(jié)合。作為師范類數(shù)學(xué),畢業(yè)后主要從事教育教學(xué)工作。在教育教學(xué)工作中,免不了要對教學(xué)質(zhì)量、教學(xué)效果等進行分析,需要用到統(tǒng)計知識。因而在設(shè)計實踐教學(xué)內(nèi)容時,應(yīng)根據(jù)學(xué)生就業(yè)后的需求情況,結(jié)合教育統(tǒng)計與教學(xué)測評等內(nèi)容,設(shè)計專業(yè)特點較強的實驗題目(內(nèi)容),如調(diào)查當(dāng)?shù)貙W(xué)生數(shù)學(xué)能力狀況、調(diào)查某一教學(xué)內(nèi)容教學(xué)效果情況等。通過實際操作,使學(xué)生掌握教育統(tǒng)計研究的方法,不僅提高學(xué)生的能力,也為今后在教育教學(xué)工作中開展科學(xué)研究打下基礎(chǔ)。2.軟件的選用。目前,專業(yè)的統(tǒng)計軟件有SAS、SPSS、Eviews、R等,這些軟件的專業(yè)性很強,功能也非常強大。但本人認為作為非專業(yè)的一般使用者,選用Excel就可以了,其原因主要有以下幾個方面:第一,專業(yè)軟件對于非專業(yè)人員要運用自如有一定難度;第二,專業(yè)軟件不少需要購買,且價格昂貴,一般人難以承受;第三,Excel軟件是一款使用廣泛的辦公軟件,且較易學(xué);最后,Excel軟件提供了豐富的函數(shù),可以進行數(shù)據(jù)處理、統(tǒng)計分析和決策輔助以及制圖等功能,完全能夠滿足基礎(chǔ)的統(tǒng)計分析工作。因此,在實踐教學(xué)中建議選用Excel軟件。3.突出實用性,增加綜合運用。《概率論與數(shù)理統(tǒng)計》課程的實驗主要以模擬和實證分析為主,缺乏結(jié)合實際、應(yīng)用性強的實驗。在設(shè)計實驗內(nèi)容時,應(yīng)結(jié)合實際的應(yīng)用,設(shè)計綜合性、操作性較強的實驗題目,以項目的形式組織學(xué)生分組開展實驗實訓(xùn)活動。例如設(shè)計題目《中學(xué)生數(shù)學(xué)能力的調(diào)查研究》,在此題之下可以分多個小題,如《中學(xué)生空間想象能力的調(diào)研》、《中學(xué)生性別差異對空間想象能力的影響研究》等等,讓學(xué)生6~8人一組,每組選擇一題開展研究。
三、實踐實例
在完成理論學(xué)習(xí)的基礎(chǔ)上,利用實踐教學(xué)環(huán)節(jié),結(jié)合教育工作的需要,設(shè)計綜合性的實踐教學(xué)內(nèi)容,并通過組織學(xué)生分組開展實驗,從而加深學(xué)生對理論知識的理解,同時提高學(xué)生的實際應(yīng)用能力。下面通過三個案例說明實踐教學(xué)的設(shè)計和開展。實例1:2011年全國五個自治區(qū)教育經(jīng)費投入情況對比分析。實驗?zāi)康模海?)使學(xué)生學(xué)會利用相關(guān)資源收集、整理數(shù)據(jù);(2)利用Excel軟件描繪柱形圖。實驗過程設(shè)計:1.數(shù)據(jù)的收集。根據(jù)收集方式的不同,統(tǒng)計數(shù)據(jù)可分為間接數(shù)據(jù)和直接數(shù)據(jù)。實例1中的數(shù)據(jù)為間接數(shù)據(jù),其收集的主要方法有:(1)通過《中國統(tǒng)計年鑒》、《中國統(tǒng)計摘要》及各省、市、地區(qū)的統(tǒng)計年鑒等公開出版物收集數(shù)據(jù);(2)利用中華人民共和國國家統(tǒng)計局、中國經(jīng)濟信息網(wǎng)等網(wǎng)站查詢數(shù)據(jù);(3)到各地方統(tǒng)計局查詢統(tǒng)計數(shù)據(jù)。在此實驗中要求學(xué)生按5人一組,通過中華人民共和國國家統(tǒng)計局網(wǎng)站,查詢相關(guān)數(shù)據(jù)(如圖1所示),并對數(shù)據(jù)進行篩選、整理,得到2011年全國五個自治區(qū)教育經(jīng)費投入情況數(shù)據(jù)。最后利用Excle軟件繪制數(shù)據(jù)表,并錄入所需數(shù)據(jù),得到2011年全國五個自治區(qū)教育經(jīng)費投入情況數(shù)據(jù)表(見表1)。由圖2可知,2011年全國五個自治區(qū)中,廣西的教育經(jīng)費投入最多,投入最少;另外內(nèi)蒙古、廣西、新疆的教育經(jīng)費相差不大,、寧夏相對較少。實驗小結(jié):該實驗是統(tǒng)計分析中的一個基礎(chǔ)性實驗,主要教會學(xué)生利用網(wǎng)絡(luò)、圖書、雜志等途徑收集數(shù)據(jù),并利用Excle軟件對數(shù)據(jù)進行預(yù)處理,最后根據(jù)繪制統(tǒng)計分析圖,得出分析結(jié)論。類似的還可練習(xí)繪制餅狀圖、折線圖、直方圖等圖形。另外,根據(jù)學(xué)生情況還可以適當(dāng)深入(如三維數(shù)據(jù)圖,多變量數(shù)據(jù)分析圖等),但應(yīng)保持與專業(yè)特點相結(jié)合。實例2:對學(xué)生考試成績進行統(tǒng)計分析。實驗?zāi)康模海?)學(xué)會制作統(tǒng)計表格;(2)學(xué)會利用Excel軟件進行描述性統(tǒng)計;(3)學(xué)會使用Excel軟件中的相關(guān)函數(shù)進行統(tǒng)計匯總。實驗過程設(shè)計:1.制作統(tǒng)計表并錄入本班學(xué)生某次考試成績(表格前6行如圖3所示)。2.在“工具”菜單中選擇“數(shù)據(jù)分析”子菜單,并在彈出的窗口中選擇“描述統(tǒng)計”,點擊“確定”后將需要進行描述統(tǒng)計的數(shù)據(jù)選入“輸入?yún)^(qū)域”,依次選定輸出區(qū)域以及需要輸出的統(tǒng)計值(如匯總統(tǒng)計、平均置信度等),確定之后可生成描述統(tǒng)計表(如表2)。3.利用COUNTIF等函數(shù)求出學(xué)生各分數(shù)段人數(shù)、優(yōu)秀率、及格率等數(shù)據(jù)(如表3)。實驗小結(jié):該實驗通過對學(xué)生成績的統(tǒng)計分析,教會學(xué)生利用Excel軟件中的相關(guān)函數(shù)和數(shù)據(jù)分析工具進行統(tǒng)計,對學(xué)生今后在事教育工作中進行教學(xué)質(zhì)量分析有一定幫助。在此基礎(chǔ)上,還可以進行拓展,如分析多門課程成績情況;分析各班級間成績是否存在顯著性差異;男、女生學(xué)習(xí)成績是否存在顯著性差異等問題。實例3:中學(xué)生數(shù)學(xué)能力調(diào)查分析。實驗?zāi)康模海?)使學(xué)生學(xué)會調(diào)查問卷的設(shè)計,并了解開展問卷調(diào)查的流程;(2)利用Excel軟件對問卷數(shù)據(jù)進行方差分析。實驗過程設(shè)計:1.設(shè)計問卷。中學(xué)生數(shù)學(xué)能力主要包括:數(shù)學(xué)的運算能力、空間想象能力、邏輯思維能力、實際應(yīng)用能力等,在設(shè)計問卷時,讓學(xué)生分成4組,每組設(shè)計一類能力測試題。學(xué)生人數(shù)較多時,可分成8組,每兩組負責(zé)一類試題,各組分別完成設(shè)計。各組設(shè)計好的試題,由大家討論,挑選出部分題目,綜合成為中學(xué)生數(shù)學(xué)能力測試卷。2.分組調(diào)查。學(xué)生分組到各中學(xué)進行問卷調(diào)查。在實施調(diào)查前,先根據(jù)該校學(xué)生名錄,采用隨機數(shù)表法抽取被調(diào)查學(xué)生名單,然后根據(jù)抽樣名單完成問卷調(diào)查,以保證數(shù)據(jù)的有效性。最后,根據(jù)收回的有效問卷整理出相關(guān)數(shù)據(jù)。3.方差分析。利用Excel軟件數(shù)據(jù)分析中的方差分析模塊,對整理好的數(shù)據(jù)進行方差分析。分析內(nèi)容可設(shè)置為性別對學(xué)生各種能力是否存在顯著性影響;年齡對學(xué)生各種能力是否存在顯著性影響;民族對學(xué)生各種能力是否存在顯著性影響;等等。學(xué)生分組選擇一個內(nèi)容進行分析,并完成分析報告。在之后的小組交流中,每組派一名代表闡述本組的分析過程和分析結(jié)果,大家再討論分析是否正確、結(jié)果是否合理等。實驗小結(jié):該實驗綜合性加強,在實驗過程中涉及到抽樣調(diào)查、數(shù)據(jù)預(yù)處理、統(tǒng)計分析等內(nèi)容。該內(nèi)容以項目進行,大項目中分子項目,由學(xué)生分組合作完成,在這樣的實驗活動中,學(xué)生既學(xué)到了專業(yè)知識,鍛煉了專業(yè)技能,又培養(yǎng)了團結(jié)協(xié)作、互相交流的品質(zhì)。
四、認識與思考
1.概率統(tǒng)計教材中數(shù)學(xué)文化元素的現(xiàn)狀
在高校概率統(tǒng)計教材中,從數(shù)學(xué)文化的角度對概率統(tǒng)計教學(xué)進行詮釋已經(jīng)得到數(shù)學(xué)教育界的普遍重視,教材在數(shù)學(xué)文化價值教育方面起到至關(guān)重要的作用。高校概率統(tǒng)計教材在數(shù)學(xué)文化教育方面也做了大量的工作,我們以盛驟等人主編的《概率論與數(shù)理統(tǒng)計》(第四版)、繆全生主編的《概率與統(tǒng)計》(第三版)和同濟大學(xué)應(yīng)用數(shù)學(xué)系主編的《工程數(shù)學(xué)—概率統(tǒng)計簡明教程》三本教材(后文中分別以教材一、教材二、教材三稱之)作為例子,它們在數(shù)學(xué)文化滲透方面的特點體現(xiàn)在:
(1)教材設(shè)計更注重生活和技術(shù)應(yīng)用領(lǐng)域背景的滲透
在內(nèi)容編排方面,每個知識點都能注意以生活實際或當(dāng)前的技術(shù)應(yīng)用問題作為背景予以介紹,強調(diào)知識的直觀性和應(yīng)用背景,強調(diào)實際問題的解決,使得學(xué)生有比較直觀的認識,能提高學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)熱情。如在介紹條件概率的定義時,教材幾乎都能從擲硬幣、擲骰子等簡單的生活實際出發(fā),從特殊到普遍地引出條件概率的定義。內(nèi)容背景涉及較多的是產(chǎn)品質(zhì)量分析模型(如質(zhì)量、壽命、含量、誤差等方面),教材一和教材三比教材二涉及應(yīng)用背景的面更加廣泛、量更大。在例題和習(xí)題設(shè)計方面,教材注重以解決有經(jīng)濟、社會、工程技術(shù)等方面實際背景的問題為主,旨在提高學(xué)生的實際應(yīng)用能力。在所統(tǒng)計的三本教材中,具有應(yīng)用背景的例題占總的例題數(shù)超過了50%,習(xí)題中有應(yīng)用背景的題目在50%左右,特別是以自然科學(xué)為應(yīng)用背景的題目占了絕大多數(shù)
(2)緊密結(jié)合信息技術(shù)的發(fā)展,提高統(tǒng)計計算能力的培養(yǎng)
加強數(shù)理統(tǒng)計的內(nèi)容,注重統(tǒng)計方法在實際工作中的應(yīng)用。如增加了假設(shè)檢驗問題中的P值檢驗法和一些統(tǒng)計圖的應(yīng)用,還介紹了bootstrap方法在數(shù)據(jù)處理方面的應(yīng)用。增加Excel軟件和“宏”數(shù)據(jù)分析工具的使用。信息技術(shù)的發(fā)展給概率統(tǒng)計的研究賦予更強大的工具,沒有現(xiàn)代的專業(yè)統(tǒng)計分析軟件作為研究工具,概率統(tǒng)計問題的研究是不可想像的,在概率統(tǒng)計教材中適當(dāng)引入統(tǒng)計軟件的運用是必要的。雖然現(xiàn)在統(tǒng)計分析軟件的功能很強大,但需要經(jīng)過專業(yè)的學(xué)習(xí)才能掌握,為適應(yīng)概率統(tǒng)計的入門使用,盛驟等人主編的《概率論與數(shù)理統(tǒng)計》(第四版)中就增加了Ex-cel軟件和“宏”數(shù)據(jù)分析工具在概率統(tǒng)計中的應(yīng)用,特別是在數(shù)理統(tǒng)計方面的運用,這對沒有經(jīng)過專業(yè)統(tǒng)計軟件學(xué)習(xí)的學(xué)生和使用者有很大的幫助。
2.高校概率統(tǒng)計教材數(shù)學(xué)文化元素滲透中存在的問題
(1)教材中數(shù)學(xué)史的呈現(xiàn)太少
呈現(xiàn)方式不明朗數(shù)學(xué)史的學(xué)習(xí),能使學(xué)生了解數(shù)學(xué)在推動社會發(fā)展方面和社會發(fā)展之間的相互作用,能使學(xué)生了解數(shù)學(xué)科學(xué)的思想體系、數(shù)學(xué)的美學(xué)價值和數(shù)學(xué)家的創(chuàng)新精神等因素。教材中的定義、定理、法則和公式都是數(shù)學(xué)家們經(jīng)過上百年甚至上千年的歷史錘煉后的完美邏輯體系,這種完美的形式忽略了曲折復(fù)雜的數(shù)學(xué)發(fā)現(xiàn)過程,但正是這種過程隱含著豐富的數(shù)學(xué)文化元素。如對概率定義的引入,三本概率統(tǒng)計教材幾乎都是這樣表達“歷史上有人做過……其結(jié)果如表……”,然后在表格中列出歷史上的幾個有關(guān)頻率的試驗,甚至有些教材只是用簡短的語言一帶而過,然后給出概率的統(tǒng)計定義,緊接著就給出概率的其他定義。這樣的表達,學(xué)生缺乏對概率定義公理化過程的認識,也失去了一次培養(yǎng)學(xué)生提高學(xué)習(xí)概率統(tǒng)計興趣與熱情的機會。更重要的是,概率定義的形成本身就是數(shù)學(xué)抽象化過程的典型例子,在這個過程中,學(xué)生可以體會到數(shù)學(xué)的抽象特性和方法。遺憾的是,目前高校概率統(tǒng)計教材中出現(xiàn)數(shù)學(xué)史的地方實在太少了。據(jù)統(tǒng)計,教材一、教材二和教材三中出現(xiàn)數(shù)學(xué)史的地方僅有頻率的定義中提到的德摩根、蒲豐和皮爾遜等人拋硬幣試驗的介紹或一些試驗數(shù)據(jù);教材二在引言中則對概率論的發(fā)展歷史作了一個簡介。三本教材中對數(shù)理統(tǒng)計的歷史介紹等于0,其實概率統(tǒng)計教材中能出現(xiàn)數(shù)學(xué)史的地方比比皆是,教材可以充分利用這些素材進行呈現(xiàn)。
(2)應(yīng)用背景相對薄弱
概率統(tǒng)計是一門實踐性強、應(yīng)用性廣的學(xué)科,當(dāng)前高校教材都注重生活和技術(shù)應(yīng)用領(lǐng)域背景的滲透,社會科學(xué)的應(yīng)用背景相對薄弱。這樣的知識呈現(xiàn)方式,對提高學(xué)生的學(xué)習(xí)興趣和應(yīng)用意識都有很大的幫助。但數(shù)學(xué)文化背景的方式是多樣,如重要數(shù)學(xué)名人物傳、數(shù)學(xué)發(fā)展事件記、重要數(shù)學(xué)成果和概率統(tǒng)計在社會科學(xué)方面的應(yīng)用等內(nèi)容,這是體現(xiàn)數(shù)學(xué)文化價值的一種有效方式,也是學(xué)生從中獲取數(shù)學(xué)思想方法、體會數(shù)學(xué)精神和體驗數(shù)學(xué)美的重要途徑,遺憾的是當(dāng)前高校概率統(tǒng)計教材在這方面還比較缺乏。
(3)多元文化缺失
概率統(tǒng)計已經(jīng)成為現(xiàn)代社會、經(jīng)濟、管理等學(xué)科的重要工具,高校概率統(tǒng)計教材在體現(xiàn)這些領(lǐng)域的應(yīng)用方面有較大的篇幅,但與學(xué)生相關(guān)生活文化背景的聯(lián)接方面顯得不夠,這容易導(dǎo)致學(xué)生認為很多概率統(tǒng)計的知識與他們生活或工作相隔遙遠甚至沒有關(guān)聯(lián),嚴(yán)重影響了學(xué)生學(xué)習(xí)概率統(tǒng)計的興趣和態(tài)度。
二、概率統(tǒng)計教材設(shè)計
中凸顯數(shù)學(xué)文化的思考現(xiàn)行的概率統(tǒng)計教材的知識系統(tǒng)邏輯體系已經(jīng)經(jīng)過多年的驗證,證明是可行的。數(shù)學(xué)文化視野下的教材設(shè)計目的是,如何在現(xiàn)行教材的知識體系中體現(xiàn)數(shù)學(xué)文化的元素,數(shù)學(xué)文化很大一部分是內(nèi)隱的,這就要求我們不能單純把數(shù)學(xué)文化內(nèi)隱的知識部分相關(guān)內(nèi)容簡單地累加到教材里面去,而應(yīng)該有機地結(jié)合在概率統(tǒng)計外顯的知識內(nèi)容中去。下面談幾點構(gòu)想。
1.關(guān)注數(shù)學(xué)史在教材中的作用
概率統(tǒng)計教材的內(nèi)容安排要適當(dāng)兼顧知識發(fā)現(xiàn)的歷史,使學(xué)生能夠領(lǐng)略到數(shù)學(xué)內(nèi)容發(fā)現(xiàn)的過程,體會到數(shù)學(xué)知識發(fā)現(xiàn)過程所蘊含的數(shù)學(xué)思想、數(shù)學(xué)方法和數(shù)學(xué)精神,有利于學(xué)生數(shù)學(xué)知識體系的建構(gòu)和優(yōu)秀品質(zhì)的形成。如在介紹“概率”的定義時,教材的編排最好能介紹概率定義形成的三個歷史階段:概率的統(tǒng)計定義、古典定義和公理化定義。使學(xué)生在學(xué)習(xí)概率的定義時能了解概率定義形成的歷史,了解貝朗特悖論的意義,得到數(shù)學(xué)螺旋上升抽象過程的感悟,掌握數(shù)學(xué)思維的方法,從而學(xué)會批判、質(zhì)疑、獨立和嚴(yán)謹?shù)乃季S品質(zhì)。在學(xué)習(xí)DeMoivre-Laplace定理時可以介紹DeMoivre等人在二項分布正態(tài)逼近的研究工作,這項研究是數(shù)理統(tǒng)計學(xué)的基礎(chǔ),也是概率統(tǒng)計思想的重要體現(xiàn),重溫這段歷史可以啟迪學(xué)生的思維、激發(fā)學(xué)生的興趣?;貧w與相關(guān)分析的發(fā)現(xiàn)對數(shù)理統(tǒng)計學(xué)發(fā)展的影響是極其重大的,這個統(tǒng)計模型的應(yīng)用,使統(tǒng)計學(xué)由統(tǒng)計描述時期進入了統(tǒng)計推斷的時期,它促使一個嚴(yán)謹?shù)慕y(tǒng)計學(xué)框架的形成,學(xué)習(xí)該知識點內(nèi)容時,很有必要向?qū)W生介紹回歸與相關(guān)分析的產(chǎn)生歷程。其實,概率統(tǒng)計中還有很多地方可以進行數(shù)學(xué)史介紹的,學(xué)生在了解這些知識產(chǎn)生的過程中將會得到濃厚的數(shù)學(xué)思維熏陶。
2.強調(diào)知識與文化的有機融合
概率統(tǒng)計的數(shù)學(xué)文化部分呈現(xiàn)要以導(dǎo)引的形式出現(xiàn),而不能把相關(guān)內(nèi)容簡單地累加到教材中去,從而保護學(xué)生自我探索熱情,使數(shù)學(xué)文化真正植根于學(xué)生的知識建構(gòu)中去。如在“概率的基本概念”部分,有必要介紹概率定義形成的三個歷史階段,但在具體的教材呈現(xiàn)中,沒有必要把這些歷史材料詳細地羅列到教材中去,如果只是簡單地把數(shù)學(xué)史料添加到教材里面去,只能增加教材的容量,導(dǎo)致教材臃腫,變成數(shù)學(xué)史的堆積而已。而應(yīng)該是在循序漸進介紹概率定義的同時,適當(dāng)采用簡潔和引導(dǎo)性的語言,營造一種寬松的數(shù)學(xué)學(xué)習(xí)環(huán)境,引導(dǎo)學(xué)生學(xué)會自己查找相關(guān)學(xué)習(xí)資源,讓學(xué)生既能感受到概率定義的發(fā)展歷史,也能掌握如何通過查找資料來進一步驗證和了解這種發(fā)展的詳細情況的能力。又如,在“假設(shè)檢驗”這一章,可以介紹歷史上威爾登檢驗骰子是否均勻的試驗,但沒必要陳述這個試驗的詳細過程,可以以問題的形式把威爾登與皮爾遜對試驗結(jié)果的爭論呈現(xiàn)出來,使學(xué)生既能了解假設(shè)檢驗產(chǎn)生的這段歷史,也可以重溫探索科學(xué)的過程。
3.充分發(fā)揮現(xiàn)代信息技術(shù)功能
“概率統(tǒng)計”是一門具有實踐性與理論性的重要學(xué)科,在不斷發(fā)展的過程中已經(jīng)成為數(shù)學(xué)科目不可或缺的組成部分,并且對此起到重要的作用。在根據(jù)課程的相關(guān)特點中,利用現(xiàn)代科學(xué)進行審視與組織,從而使數(shù)學(xué)概率統(tǒng)計中融入新鮮元素,在教學(xué)內(nèi)容上引入有趣的應(yīng)用題目,并且要對科學(xué)方法以及相關(guān)技術(shù)、概率統(tǒng)計知識進行聯(lián)系。學(xué)生在運用“概率統(tǒng)計”知識的基礎(chǔ)上們能夠建立數(shù)學(xué)模式,對“概率統(tǒng)計”的知識也會產(chǎn)生興趣愛好。除此之外,還能促進學(xué)生學(xué)習(xí)習(xí)慣的改變,變被動為主動,從根本上提高學(xué)習(xí)效率。將數(shù)學(xué)建模的思想積極融入到數(shù)學(xué)概率統(tǒng)計之中,能夠在不打破傳統(tǒng)知識的同時,應(yīng)用案例進行解決。通常情況下,學(xué)習(xí)通過對案例的學(xué)習(xí),能夠親自體驗在使用概率統(tǒng)計知識進行數(shù)學(xué)建模的整個過程,從而加深對概率統(tǒng)計知識的認知與理解,促進學(xué)生的學(xué)習(xí)興趣與學(xué)習(xí)習(xí)慣。從另一個角度而言,學(xué)生在努力學(xué)習(xí)數(shù)學(xué)概率知識的同時,能夠真正做到“學(xué)以致用”,由于數(shù)學(xué)概率統(tǒng)計是一門重要且復(fù)雜的課程,在不影響到教學(xué)大綱的情況下利用多種手段進行教學(xué),可以增強學(xué)生數(shù)學(xué)建模的基本能力,從根本上體現(xiàn)數(shù)學(xué)建模的思想。
二、教學(xué)方法得以改進,促進開放式學(xué)習(xí)方式的形成
(一)改變傳統(tǒng)教學(xué)模式,探索新型教育方式通過實踐證明,傳統(tǒng)的教學(xué)模式與方式無法適應(yīng)社會的需要,不能滿足現(xiàn)代化的教學(xué)要求,因此無法在傳統(tǒng)教育模式中取得滿意的教學(xué)效果。通過將數(shù)學(xué)建模融入到數(shù)學(xué)概率統(tǒng)計之中,可以在傳統(tǒng)的教學(xué)模式中融入新鮮元素,并且結(jié)合相關(guān)案例,采用啟發(fā)式教學(xué)模式進行教學(xué),實現(xiàn)由淺入深、由難到易,使學(xué)生掌握數(shù)學(xué)概率統(tǒng)計的基本概念以及相關(guān)方法,從而對數(shù)學(xué)學(xué)習(xí)產(chǎn)生興趣,變被動學(xué)習(xí)為主動學(xué)習(xí),從根本上加深學(xué)生對數(shù)學(xué)概率統(tǒng)計知識與建模思想的認識與理解。
(二)改變傳統(tǒng)學(xué)習(xí)方式,建立開放型學(xué)習(xí)形式在數(shù)學(xué)概率統(tǒng)計的教學(xué)內(nèi)容上,認可教師不可以按照傳統(tǒng)的教學(xué)模式作為基本模式,不能按照教科書進行照本宣科。眾所周知,數(shù)學(xué)建模是沒有固定模式的,在進行數(shù)學(xué)建模時,要積極利用各種方式、各種技巧,因此,教師在對學(xué)生傳授相關(guān)知識的同時,要積極引導(dǎo)學(xué)生如何學(xué)習(xí),如何正確的使用建模技巧,并且要讓學(xué)生對問題發(fā)生的背景以及過程進行探索,從根本上提高學(xué)生的自主創(chuàng)新能力。除此之外,在對習(xí)題進行處理時,學(xué)生也不能局限于比較充分的問題上,要不斷引用條件不充分的問題進行研究,并且要自己動手對材料、信息,對數(shù)據(jù)進行分析,建模,并且還要對較為抽象的問題進行具體化,從而增強自身對學(xué)習(xí)的興趣與能力。此外,教師要不斷開展討論課,讓學(xué)生積極發(fā)表自己的建議,對問題的見解進行回答,加強與同學(xué)之間的交流與學(xué)習(xí),從而使學(xué)生在開放型學(xué)習(xí)環(huán)境中不斷成長。
三、改善教材中的理論學(xué)習(xí),加強實踐學(xué)習(xí)
在學(xué)生的實踐活動之中,為了能夠使學(xué)生對知識有所了解,那么教材僬僥設(shè)計有關(guān)學(xué)生訓(xùn)練的習(xí)題。一般而言,數(shù)學(xué)概率統(tǒng)計中的教材在教學(xué)內(nèi)容的處理上過于理論化,對習(xí)題的次序與搭配卻不符合學(xué)生的基本特點,甚至有部分教材在設(shè)計的習(xí)題中難度過高,從而導(dǎo)致學(xué)生在學(xué)習(xí)中遇到困難,對數(shù)學(xué)概率統(tǒng)計與數(shù)學(xué)建模失去興趣。從實際角度而言,數(shù)學(xué)概率統(tǒng)計作為數(shù)學(xué)教材,習(xí)題是非常重要的,大量的習(xí)題可以鍛煉學(xué)習(xí)的邏輯性與思維型,因此,在對數(shù)學(xué)教材進行編寫時要按照由淺入深的基本原則,對練習(xí)題進行分門別類的編寫,從而滿足不同層次與不同對象的基本需求。在現(xiàn)有的數(shù)學(xué)概率統(tǒng)計習(xí)題之中,還需增加比較有趣、與生活有關(guān)的系統(tǒng),并且該類習(xí)題要對數(shù)學(xué)建模的思想進行體現(xiàn)。與此同時,在教材中還應(yīng)該添加應(yīng)用性強的概率案件與統(tǒng)計案件,比如像數(shù)據(jù)的統(tǒng)計、數(shù)據(jù)的擬合等,讓學(xué)生能夠?qū)W會數(shù)學(xué)建模,在豐富學(xué)生課余知識的同時,也在一定程度上提高了學(xué)生的應(yīng)用能力。
四、結(jié)語
我們熟知許多科學(xué)定律,例如牛頓力學(xué)定律,化學(xué)中的各種定律等。但是在現(xiàn)實中,事實上很難用如此確定的公式描述一些現(xiàn)象。比如,人的壽命對于個人來說是難于事先確定的。就個體來說,一個有很多壞習(xí)慣的人(比如吸煙、喝酒、不鍛煉的人)可能比一個很少得病、生活習(xí)慣良好的人活得更長。實際上活得長短是受許多因素影響的,有一定的隨機性。這種隨機性可能和人的經(jīng)歷、基因、習(xí)慣等無數(shù)說不清的因素都有關(guān)??傮w來說,人的平均年齡非常穩(wěn)定。一般而言,女性的平均壽命比男性多幾年。這就是規(guī)律性。一個人可能活過這個平均年齡,也可能活不到這個年齡,這是隨機性。但是總體來說,平均年齡的穩(wěn)定性,卻說明了隨機之中有規(guī)律性。又比如你每天見到什么人是比較隨機的,但規(guī)律就是:你在不同的地方一定會見到不同的人,你在課堂上會見到同班同學(xué),你在宿舍會碰到同寢室的室友,你去打球會見到球友,這兩種規(guī)律就都是統(tǒng)計規(guī)律。
二、巧借實例自然引入新概念
著重培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識,教師在教學(xué)中的示范作用很重要。概率統(tǒng)計課程的概念是教學(xué)的難點,教師上課如果直接寫出來,則學(xué)生會感到很突兀,很抽象且難于接受。一個教學(xué)經(jīng)驗豐富的教師應(yīng)當(dāng)重視概念引入的教學(xué)設(shè)計,從學(xué)生的認知規(guī)律出發(fā),先使學(xué)生對概念形成感性認識,揭示概念產(chǎn)生的實際背景和基礎(chǔ),了解概念形成的必要性和合理性。例如極大似然估計的概念教學(xué),一般引入的第一個例子是有個同學(xué)和一個獵人去打獵,一只野兔從前方經(jīng)過,只聽一聲槍響,野兔就倒下了,這發(fā)命中目標(biāo)的子彈是誰打的?同學(xué)們一定會推斷是獵人,你們會說獵人命中目標(biāo)的概率比同學(xué)的大,這個例子說明了你們形成了極大似然估計的初步思想。極大似然估計的思想是在已經(jīng)得到實驗結(jié)果的情況下,應(yīng)該尋找使這個結(jié)果出現(xiàn)的可能性最大的那個θ作為θ的估計θ∧。極大似然估計法首先由德國數(shù)學(xué)家高斯于1821年提出,英國統(tǒng)計學(xué)家費歇于1922年重新發(fā)現(xiàn)并作了進一步研究。第二個例子是兩個射手打靶,甲的命中率為0.9,乙的命中率為0.4,現(xiàn)靶面顯示10中6,且是一個人所為,請問是誰打的?一開始學(xué)生中會形成不同意見,有的說是甲,有的說是乙,有的不知如何判斷。表面看,甲的命中率高,如果說是甲好像低估了甲的水平,乙的命中率低,如果說是乙又高估了乙的水平,但現(xiàn)在要作一個合理推斷,我們建立一個統(tǒng)計模型:有一個總體為兩點分布,參數(shù)為P(0.9或0.4侍定),現(xiàn)有樣本X1,X2,…,Xn(n=10),其中有6個觀察值為1,4個為0,設(shè)事件A={10槍6中靶心}若是甲所射,則A發(fā)生的概率為P1(A)=C610(0.8)6(0.2)4=0.088,若是乙所射,則A發(fā)生的概率為P2(A)=C610(0.8)6(0.5)4=0.21,顯然,P1(A)<P2(A),故可認為乙所射的可能性較大。從這兩個實例中教師再引出極大似然估計的原理:在已經(jīng)得到試驗結(jié)果的情況下,我們應(yīng)該尋找使這個結(jié)果出現(xiàn)的可能性最大的那個θ作為真θ的估計,顯得水到渠成。
三、合理假設(shè)形成模型意識
概率統(tǒng)計學(xué)科本來就是為了解決實際問題而產(chǎn)生的,它的起源是對賭博問題的研究。要培養(yǎng)學(xué)生的應(yīng)用意識更應(yīng)加強模型意識。數(shù)學(xué)模型是指應(yīng)用數(shù)學(xué)的方法和語言符號對現(xiàn)實事物進行數(shù)學(xué)的假設(shè)和合理簡化,可以理解為現(xiàn)實事物在數(shù)學(xué)世界的抽象存在,也是人們對實際問題的原型進行的數(shù)學(xué)抽象,它的目的是便于應(yīng)用適當(dāng)?shù)臄?shù)學(xué)工具得到對問題的量化研究。在概率統(tǒng)計教學(xué)中建立的數(shù)學(xué)模型應(yīng)當(dāng)選擇問題的主要要素,模型相對比較簡單并且易于教學(xué)推理和分析。
四、循序漸進培養(yǎng)應(yīng)用能力
數(shù)學(xué)應(yīng)用能力是一種綜合能力,應(yīng)循序漸進,慢慢培養(yǎng)。在現(xiàn)實中我們要注意:(1)概率是指某件事情發(fā)生的可能性大小。例如在天氣預(yù)報中會提到晴天與雨天,預(yù)報明天下雨,只是說雨天可能性很大,這種概率不可能超過百分之百。(2)有些概率是可以估計的。比如擲骰子,你得5點的概率應(yīng)該是六分之一,但擲骰子的結(jié)果還只可能是六個數(shù)目之一。這個已知的規(guī)律就反映了規(guī)律性,而得到哪個結(jié)果則反映了隨機性。(3)應(yīng)當(dāng)在大量重復(fù)試驗中出現(xiàn)的頻率來估計生活中隨機事件出現(xiàn)的概率。(4)多學(xué)習(xí)一些統(tǒng)計軟件,充分利用一些直接的或間接的數(shù)據(jù)來源。
五、結(jié)語
1.教學(xué)課堂中注重實例的講解
概率論以及數(shù)學(xué)統(tǒng)計這門課程具有較強的實踐性,因此,在教學(xué)課程上,教師需要在教學(xué)的基本內(nèi)容中加入更多的實例教學(xué),幫助學(xué)生理解這門學(xué)科的基本知識點,加深學(xué)生對基本理論的記憶。例如:在講概率學(xué)中最基本的加法公式時,加入數(shù)學(xué)建模的基本思想,利用俗語“三個臭皮匠”的相關(guān)內(nèi)容作為教學(xué)實例。俗語中有三個臭皮匠的想法能夠比的上一個諸葛亮,意思就是說多個人共同合作的效果比較大,可以將這種實際中的問題引入到數(shù)學(xué)概率論的教學(xué)中,從科學(xué)的概率論中證明這種想法是否正確。首先需要根據(jù)具體的問題建立相應(yīng)的數(shù)學(xué)模型,想要證明三個臭皮匠能否勝過諸葛亮,這個問題主要是討論多個人與一個人在解決問題的能力上是否存在較大的差別,在概率論中計算解決問題的概率。用c表示問題中諸葛亮解決問題的能力,ai表示其中(ii=1,2,3)個臭皮匠解決問題的能力,每一個臭皮匠單獨解決問題存在的概率是P(a1)=0.45,P(a2)=0.6,P(a3)=0.45,諸葛亮解決問題存在的概率是P(c)=0.9,事件b表示順利解決問題,那么諸葛亮順利解決問題的概率P(b)=P(c)=0.9,三個臭皮匠能夠順利解決問題的概率是P(b)=P(a1)+P(a2)+P(a3)。按照概率論中的基本加法公式得P(b)=P(a1+a2+a3)=P(a1)+P(a2)+P(a3)-P(a1a2)-P(a2a3)-P(a1a3)+P(a1a2a3)解得P(b)=0.901。因此,得出結(jié)論三個臭皮匠順利解決問題存在的準(zhǔn)確概率大于90%,這種概率大于諸葛亮獨自順利解決問題的概率,提出的問題被證實。在解決這一問題過程中,大部分學(xué)生都能夠在數(shù)學(xué)建模找到學(xué)習(xí)的樂趣,在輕松的課堂氛圍中學(xué)到了基本的概率學(xué)知識。這種教學(xué)方式更貼近學(xué)生的生活,有效的提高了學(xué)生學(xué)習(xí)概率論以及數(shù)學(xué)統(tǒng)計這一課程的興趣,培養(yǎng)學(xué)生積極主動的學(xué)習(xí)。
2.課設(shè)數(shù)學(xué)教學(xué)的實驗課
一般情況下,數(shù)學(xué)的實驗課程都需要結(jié)合數(shù)學(xué)建模的基本思想,將各種數(shù)學(xué)軟件作為教學(xué)的平臺,模擬相應(yīng)的實驗環(huán)境。隨著科學(xué)技術(shù)的不斷發(fā)展,計算機軟件應(yīng)用到教學(xué)中已經(jīng)越來越普遍,一般概率論以及數(shù)學(xué)統(tǒng)計中的計算都可以利用先進的計算機軟件進行計算。教學(xué)中經(jīng)常使用的教學(xué)軟件有SPSS以及MABTE等,對于一些數(shù)據(jù)量非常大的教學(xué)案例,比如數(shù)據(jù)模擬技術(shù)等問題,都能夠利用各種軟件進行準(zhǔn)確的處理。在數(shù)學(xué)實驗的教學(xué)課程中,學(xué)生能夠真實的體會到數(shù)學(xué)建模的整個過程,提高學(xué)生的實際應(yīng)用能力,促進學(xué)生自發(fā)的主動探索概率論以及數(shù)學(xué)統(tǒng)計的相關(guān)知識內(nèi)容。通過專業(yè)軟件的學(xué)習(xí)和應(yīng)用,增強學(xué)生實際動手以及解決問題的能力。
3.利用新的教學(xué)方法
傳統(tǒng)數(shù)學(xué)說教式的教學(xué)方法并不能取得較高的教學(xué)效果,這種傳統(tǒng)的教學(xué)也已經(jīng)無法滿足現(xiàn)代教學(xué)的基本要求。在概率論以及數(shù)學(xué)統(tǒng)計的教學(xué)中融入數(shù)學(xué)建模的基本思想并采用新的教學(xué)方法,能夠有效的提高課堂教學(xué)效果。將講述教學(xué)與課堂討論相互結(jié)合,在講述基本概念時穿插各種討論的環(huán)節(jié),能夠激發(fā)學(xué)生主動思考。啟發(fā)式教學(xué)法,通過已經(jīng)掌握的知識對新的知識內(nèi)容進行啟發(fā),引導(dǎo)學(xué)生發(fā)現(xiàn)問題解決問題,自覺探索新的知識。案例教學(xué)法,實踐教學(xué)證明,這也是在概率論中融入數(shù)學(xué)建?;舅枷胱钣行У慕虒W(xué)方法。在學(xué)習(xí)新的知識概念時,首先引入適當(dāng)?shù)慕虒W(xué)案例,并且,案例的選擇要新穎具有針對性,從淺到深,教學(xué)的內(nèi)容從具體到抽象,對學(xué)生起到良好的啟發(fā)作用。學(xué)生在學(xué)習(xí)的過程中改變了以往被動學(xué)習(xí)的狀態(tài),開始主動探索,案例的教學(xué)貼近學(xué)生的生活學(xué)生更容易接受。這種教學(xué)方法加深了學(xué)生對概率論相關(guān)知識的理解,發(fā)散思維,并利用概率論以及數(shù)學(xué)統(tǒng)計的基本內(nèi)容解決現(xiàn)實中的實際問題,激發(fā)了學(xué)生的學(xué)習(xí)興趣,同時提高了學(xué)生解決實際問題的綜合能力。在運用各種新的教學(xué)方法時,應(yīng)該更加注重學(xué)生的參與性,只有參與到教學(xué)活動中,才能夠真正理解知識的內(nèi)涵。
4.有效的學(xué)習(xí)方式
對于概率論以及數(shù)學(xué)統(tǒng)計的相關(guān)內(nèi)容在教學(xué)的過程中不能只是照本宣科,而數(shù)學(xué)建模的基本思想并沒有固定不變的模式,需要多種技能的相互結(jié)合,綜合利用。在實際的教學(xué)中,教師不應(yīng)該一味的參照課本的內(nèi)容進行教學(xué),而是引導(dǎo)學(xué)生學(xué)會走出課本自主解決現(xiàn)實中的各種問題,鼓勵學(xué)生查閱相關(guān)的資料背景,提高學(xué)生自主學(xué)習(xí)的能力。在教學(xué)前,教師首先補充一些啟發(fā)式的數(shù)學(xué)知識,傳授教學(xué)中新的觀念以及新的學(xué)習(xí)方法,拓展學(xué)生的知識面。在進行課后的習(xí)題練習(xí)時,教師需要適當(dāng)?shù)囊胍徊糠謼l件并不充分的問題,改變以往課后訓(xùn)練的模式,注重培養(yǎng)學(xué)生自己動手,自己思考,在得到基本數(shù)據(jù)后,建立數(shù)學(xué)模型的能力。還可以在教學(xué)中加入專題討論的內(nèi)容,鼓勵學(xué)生能夠勇敢的表達自己的想法和見解,促進學(xué)生之間的討論和交流。改變以往教師傳授知識,學(xué)生被動接受的學(xué)習(xí)方式,學(xué)會自主學(xué)習(xí),自主探究,勇于提出自己的看法并通過理論知識的學(xué)習(xí)驗證自己的想法。有效的學(xué)習(xí)方式能夠調(diào)動學(xué)生學(xué)習(xí)的積極性,加深對知識的理解。
5.將數(shù)學(xué)建模的基本思想融入課后習(xí)題中
課后作業(yè)的練習(xí)是鞏固課堂所學(xué)知識的重要環(huán)節(jié),也是教學(xué)內(nèi)容中不可忽視的過程。概率論統(tǒng)計課程內(nèi)容具有較強的實用性,針對這一特點,在教學(xué)中組織學(xué)生更多的參與各種社會實踐活動,重在實際應(yīng)用所學(xué)的知識。對于課后習(xí)題的布置,可以將數(shù)學(xué)建模的思想融入其中,并讓這種思想真正的解決現(xiàn)實中的各種問題,在實踐中學(xué)會應(yīng)用,不僅能夠鞏固課堂學(xué)到的理論知識,還能夠提高學(xué)生的實踐能力。例如:課后的習(xí)題可以布置為測量男女同學(xué)的身高,并用概率統(tǒng)計學(xué)的相關(guān)知識分析身高存在的各種差異,或者是分析中午不同時間段食堂的擁擠程度,根據(jù)實際情況提出解決方案,或者是分析某種水果具體的銷售情況與季節(jié)變化存在的內(nèi)在關(guān)系等。在解決課后習(xí)題時,學(xué)生可以進行分組,利用團隊的合作共同完成作業(yè)的任務(wù),通過實踐活動完成訓(xùn)練。在學(xué)生完成作業(yè)的過程中,不僅領(lǐng)會到了數(shù)學(xué)建模的基本思想,還能夠?qū)⒏怕式y(tǒng)計的相關(guān)知識應(yīng)用到實際的問題中,并通過科學(xué)的統(tǒng)計和分析解決實際問題,培養(yǎng)了學(xué)生自主探究以及實際操作的綜合能力。
二、總結(jié)
對傳統(tǒng)的概率論與數(shù)理統(tǒng)計教學(xué)進行歸納,大致是:理論知識+說明舉例+解題+考試。這種教學(xué)模式可以讓學(xué)生掌握基礎(chǔ)知識,提升計算能力,也有利于解決課后習(xí)題。但這種教學(xué)模式也有一定的缺陷,不難看出,它與實際脫離較大,更多地停留在書本上。學(xué)生掌握了理論知識,未必會將其運用到實際,這違背了素質(zhì)教育的宗旨,不利于學(xué)生學(xué)習(xí)積極性的提高。運用數(shù)學(xué)建模的指導(dǎo)思想,可以有效避免傳統(tǒng)教學(xué)模式的缺陷。數(shù)學(xué)建模的一個重要功能就是培養(yǎng)學(xué)生理論聯(lián)系實際的能力。將數(shù)學(xué)建模思想融入教學(xué),是概率論與數(shù)理統(tǒng)計教學(xué)的需要,也是順應(yīng)教學(xué)改革的需求。
二、數(shù)學(xué)建模思想融入課堂教學(xué)
教師在講授概率論與數(shù)理統(tǒng)計課程時,面臨著非常重要的任務(wù)。如何讓學(xué)生通過學(xué)習(xí)增強對本課程的理解,并將知識合理地運用到實踐中,是擺在教師面前的問題。教師要將數(shù)學(xué)建模思想合理地融入到課堂。
(一)課堂教學(xué)側(cè)重實例
概率論與數(shù)理統(tǒng)計課程是運用性很強的一門課程。因此,將教學(xué)內(nèi)容與實例想結(jié)合,可以有效提高學(xué)生的理解力,加深學(xué)生對知識點的印象。例如,在講授概率加法公式的時候,可以用“三個臭皮匠問題”作為為實例。“三個臭皮匠賽過諸葛亮”是對多人有效合作的一種贊美,我們可以把這個問題引入到數(shù)學(xué)中來,從概率的計算方面驗證它的正確性。首先可以建立起數(shù)學(xué)模型,三個臭皮匠能否賽過諸葛亮,主要是看他們解決實際問題的能力是否有差距,歸結(jié)為概率就是解決問題的概率大小比較。不妨用C表示諸葛亮解決某問題,Ai表示第i個臭皮匠單獨解決某問題,其中i=1,2,3,每個臭皮匠解決好某問題的概率是P(A1)=0.45,P(A2)=0.55,P(A3)=0.60,而諸葛亮成功解決問題的概率是P(C)=0.90。那么事件B順利解決對于諸葛亮的概率是P(B)=P(C)=0.90,而三個臭皮匠解決好B問題的概率可以表示成P(B)=P(A1)+P(A2)+P(A3)。解決此問題的過程中,學(xué)生既感受到了數(shù)學(xué)建模的樂趣,也在輕松的氛圍中學(xué)習(xí)到了概率知識。這種貼近實際生活的教學(xué)方式,不但可以提高學(xué)生學(xué)習(xí)概率的積極性,也可以增強教師從事素質(zhì)教育的理念。
(二)開設(shè)數(shù)學(xué)實驗課
數(shù)學(xué)實驗一般要結(jié)合數(shù)學(xué)模型,以數(shù)學(xué)軟件為平臺,模擬實驗環(huán)境進行教學(xué)。發(fā)展到今天,計算機軟件已經(jīng)很成熟,一般的統(tǒng)計計算都可以由計算機軟件來完成。SPSS、SAS、MABTE等軟件已經(jīng)廣泛得到了運用,較大數(shù)據(jù)量的案例,如統(tǒng)計推斷、數(shù)據(jù)模擬技術(shù)等方面的問題,都可以用這些軟件來處理。通過數(shù)學(xué)實驗,不但可以體現(xiàn)數(shù)學(xué)建模的全過程,還能增強學(xué)生的應(yīng)用意識,促使他們主動學(xué)習(xí)概率論與數(shù)理統(tǒng)計知識。學(xué)生通過軟件的學(xué)習(xí)與運用,增強了動手能力,解決實際問題的能力也會有所增強。
(三)使用新的教學(xué)方法
眾所周知,傳統(tǒng)的填鴨式的教學(xué)方法很難取得好的教學(xué)效果,已經(jīng)不適應(yīng)現(xiàn)代教學(xué)的要求。實踐證明,結(jié)合案例的教學(xué)方法可以由淺入深,從直觀到抽象,具有一定的啟發(fā)性。學(xué)生可以從中變被動為主動,加深對知識的理解。這種教學(xué)方法還能讓學(xué)生的眼光從課堂上轉(zhuǎn)移到日常生活,進行發(fā)散思維,學(xué)生會進一步發(fā)揮主觀能動性,思考如何將實際問題數(shù)學(xué)化,如何結(jié)合概率論與統(tǒng)計知識解決實際問題,等等。在這種情況下,學(xué)生的興趣提高了,教學(xué)效率自然也會得到提高。
(四)建立合理的學(xué)習(xí)方式
概率論與數(shù)理統(tǒng)計教學(xué)不能一味地照本宣科。數(shù)學(xué)建模并無固定模式,它需要的更多是技能的綜合。教師在實際教學(xué)過程中,不應(yīng)該以課本為標(biāo)準(zhǔn),而應(yīng)該多引導(dǎo)學(xué)生自主解決實際問題,讓學(xué)生去查閱相關(guān)背景資料,以提高其自學(xué)能力。教師可以適當(dāng)補充一些前言的數(shù)學(xué)知識,讓一些新觀念和新方法開闊學(xué)生的視野。在處理習(xí)題問題上,教師要適當(dāng)引入一些不充分的問題,而不是僅僅局限于條件比較充分的問題上,要讓學(xué)生自己動手分析數(shù)據(jù)、建立模型。教師應(yīng)該經(jīng)常開展專題討論,引導(dǎo)學(xué)生勇于提出自己的見解,加強學(xué)生間的交流與互助。例如,在講授二項分布知識時,為了加深學(xué)生對知識的領(lǐng)悟,教師可以用“盥洗室問題”為實例來講授二項式的實際運用。問題:宿舍樓內(nèi)的盥洗室處于用水高峰時,經(jīng)常要排隊等待,學(xué)生對此意見很大。學(xué)校領(lǐng)導(dǎo)決定把它當(dāng)作一道數(shù)學(xué)題來解答,希望學(xué)生能從理論上給出合理的解決方法。分析:首先收集基本的資料,盥洗室有50個水龍頭,宿舍樓內(nèi)有500個學(xué)生,用水高峰期為2小時(120分鐘),平均每個學(xué)生用水時間為12分鐘,等待時間一般不超過12分鐘,但經(jīng)常等待會讓學(xué)生失去耐心。學(xué)生希望100次用水中等待的次數(shù)不超過10次。解決方法:設(shè)X為某時刻用水的學(xué)生人數(shù),先找到X服從什么分布。500個學(xué)生中,每個學(xué)生的用水概率是0.1,現(xiàn)在X人用水,與獨立實驗序列類似,比較適合用二項分布,因此設(shè)X服從二項分布,n=500,p=0.1,用概率公式表示為P(X=K)=CKnPK(1-P)n-K。接下來計算概率,主要關(guān)注不需要等待的概率(即X<50),P(X<50)=∑49K=0CKnPK(1-P)n-K,這個二項式分布是一個初步的模型,可按二項分布來計算。由于n較大(n=500),直接用二項分布計算過于復(fù)雜,我們可以利用兩種簡化近似公式來計算(泊松分布和正態(tài)分布)。經(jīng)過查正態(tài)分布表,我們可以算出x=58,這說明水龍頭的個數(shù)在59~62這個范圍時,學(xué)生等待的時間概率比較合理。
三、課后練習(xí)反饋數(shù)學(xué)建模思想
數(shù)學(xué)課程離不開課后練習(xí),課后作業(yè)是其重要的組成部分,對于鞏固課堂知識、進一步理解所學(xué)理論具有重要作用。因此,教師要把握好課后練習(xí)環(huán)節(jié)。概率論與數(shù)理統(tǒng)計這門課涉及到很多隨機試驗,一般的統(tǒng)計規(guī)律都需要在隨機試驗中找到結(jié)果。例如通過投擲骰子或硬幣可以理解頻率與概率的關(guān)系,通過雙色球的抽樣可以理解隨機事件中的相互獨立性,統(tǒng)計一本書上的錯別字可以判斷其是否符合泊松分布等。通過親自做實驗,學(xué)生們不但能探求到隨機現(xiàn)象的規(guī)律性,還能進一步鞏固所學(xué)的統(tǒng)計理論。除了一般的練習(xí)題以外,教師可以適當(dāng)增加一些與日常生活密切相關(guān)的概率統(tǒng)計題目,這些題目往往趣味性較強。例如,在知道彩票的抽獎方法和中獎規(guī)則后,可以明確三個問題:(1)摸彩票的次序與中獎概率是否相關(guān)?(2)假如彩票的總量是100萬張,則一、二等獎的中獎概率是多少?(3)一個人打算買彩票,在何種情況下中獎概率大一些?這種課后練習(xí)對于學(xué)生趣味的提高很有幫助。
四、考核方式折射數(shù)學(xué)建模思想
作為一門課程,肯定需要考核,這是教學(xué)過程中的一個必然環(huán)節(jié)。課程考核是評估教學(xué)質(zhì)量的重要方式。概率論與數(shù)理統(tǒng)計課程傳統(tǒng)的考試一般采用期末閉卷考試,教師通常按固定的內(nèi)容出題。這種情況下,學(xué)生為了應(yīng)付考試,會把很多精力都用在背誦公式和概念上面,從而會忽視知識的實際運用。學(xué)生的綜合成績雖然也包括平時成績,但期末閉卷考試往往占據(jù)很大比例。就是是平時成績,其主要還是考核學(xué)生課后的習(xí)題完成情況。因此,考核實際就成了習(xí)題考試。對于學(xué)生在課后的實驗,考核中往往很少涉及。這會導(dǎo)致學(xué)生逐漸脫離日常實際,更注重課堂考勤和作業(yè)。要改變這種情況,有必要改變傳統(tǒng)的考核方式。靈活多變的考核方式才更有利于調(diào)動學(xué)生的積極性,激發(fā)他們各方面的潛能。考核可以適當(dāng)增加平時成績所占的比重,比如,平時成績可以占總成績的30%以上。平時成績主要采用開放性考核,由課后實驗或課外實踐組成。教師可以提出一些實踐問題,讓學(xué)生自主去解決。學(xué)生可以單獨完成任務(wù),也可以組隊進行,最后提交一份研究報告,教師在此基礎(chǔ)上進行評定。
五、結(jié)語
關(guān)鍵詞:概率統(tǒng)計;數(shù)學(xué)建模;教學(xué)
數(shù)學(xué)建模主要是借助調(diào)查、數(shù)據(jù)收集、假設(shè)提出,簡化抽象等一系列流程構(gòu)建的反映實際問題數(shù)量關(guān)系的學(xué)科,將數(shù)學(xué)建模思想融入到概率統(tǒng)計教學(xué)中,不僅能夠幫助學(xué)生更好地理解與掌握理論知識,同時對于提高學(xué)生運用數(shù)學(xué)思想解決實際問題的能力大有裨益??梢哉f,概率統(tǒng)計教學(xué)與數(shù)學(xué)建模思想的融入具有重要的理論以及現(xiàn)實意義。
1.教學(xué)內(nèi)容實例的側(cè)重
在大學(xué)數(shù)學(xué)教育體系中最為重要的一個目標(biāo)就是培養(yǎng)學(xué)生建模、解模的能力,但是在傳統(tǒng)概率統(tǒng)計教學(xué)中,教師大多注重學(xué)生的計算能力訓(xùn)練以及數(shù)學(xué)公式推導(dǎo),而常常忽視利用已學(xué)知識進行實際問題的解決,使得大多數(shù)學(xué)生的應(yīng)用能力無法得到提高。所以,為了能夠在教學(xué)中提高學(xué)生應(yīng)用概率與統(tǒng)計的實際能力,教師應(yīng)在教學(xué)內(nèi)容設(shè)計中吸收與融入與實際問題息息相關(guān)的題目,使學(xué)生在課堂中不僅能夠輕松學(xué)習(xí)概率知識,增加學(xué)習(xí)主動性,同時能夠嘗試到數(shù)學(xué)建模的樂趣,提高自身數(shù)學(xué)素養(yǎng)。例如,在古典型概率問題的教學(xué)中,為了加深學(xué)生對于該部分知識的理解,教師可以引入彩票概率的實際問題,通過引導(dǎo)學(xué)生分析各等獎的中獎概率,使學(xué)生獲得極高的建模、解模能力。
2.在教學(xué)方法中融入數(shù)學(xué)建模思想
在概率統(tǒng)計教學(xué)中,教師還需要在教學(xué)方法中融入數(shù)學(xué)建模思想。首先,采取啟發(fā)式教學(xué)方法。在課堂教學(xué)中,教師應(yīng)引導(dǎo)學(xué)生利用已學(xué)知識開展認識活動,在問題發(fā)現(xiàn)、分析、解決的一系列鍛煉中獲得概率統(tǒng)計知識的自覺領(lǐng)悟。其次,采取講授與討論相結(jié)合的教學(xué)方法。在課堂中,講授是最為基本的教學(xué)方式,不過單一的講授很可能導(dǎo)致課堂的枯燥,所以課堂中還需要適當(dāng)穿插一些討論,使學(xué)生在活躍的氛圍中激活思維,延伸知識面。再次,采取案例分析的教學(xué)方法。案例分析是在概率統(tǒng)計教學(xué)中融入數(shù)學(xué)建模思想的一種有效方法。在教學(xué)中應(yīng)用的案例應(yīng)進行精選,其不僅需要具有典型性,同時還需要具備一定的新穎性以及針對性,通過縮短實際應(yīng)用與數(shù)學(xué)方法間的距離,使學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣被大大激發(fā)。最后,采取現(xiàn)代教育技術(shù)的教學(xué)方法。在概率統(tǒng)計的問題中常常需要較大的數(shù)據(jù)處理運算量,所以為了簡化問題,使學(xué)生掌握一定的統(tǒng)計軟件具有重要意義。通過結(jié)合具體的概率統(tǒng)計案例,在學(xué)生面前演示統(tǒng)計軟件中的基本功能,為提高學(xué)生掌握統(tǒng)計方法以及實際操作能力奠定堅實基礎(chǔ)。知識的獲取并不是單純的認識過程,其更應(yīng)偏向于創(chuàng)造,在不斷強調(diào)知識發(fā)現(xiàn)的過程中幫助學(xué)生認識科學(xué)本質(zhì)、掌握學(xué)習(xí)方法。
3.在概率統(tǒng)計教學(xué)中融入數(shù)學(xué)建模思想的案例分析
一個完整的數(shù)學(xué)思維必須經(jīng)過問題數(shù)學(xué)化以及數(shù)學(xué)化問題求解兩個方面,只有讓學(xué)生體驗以及掌握到一般的數(shù)學(xué)思維方法,才能使其真正擁有利用數(shù)學(xué)知識解決實際問題的能力。而具體分析在概率統(tǒng)計教學(xué)中融入數(shù)學(xué)建模思想的案例,能夠為引導(dǎo)學(xué)生發(fā)現(xiàn)生活中的數(shù)學(xué),開拓學(xué)生眼界奠定堅實基礎(chǔ)。很多概率的實際問題中均存在著隨機現(xiàn)象,其可以視作許多獨立因素影響的綜合結(jié)果,近似服從于正態(tài)分布。例如,某高校擁有5000名學(xué)生,由于每天晚上打開水的人較多,所以開水房經(jīng)常出現(xiàn)排長隊的現(xiàn)象,試問應(yīng)增加多少個水龍頭才能解決該種現(xiàn)象?對于該問題的解決,教師首先應(yīng)組織學(xué)生對開水房現(xiàn)有的水龍頭個數(shù)進行統(tǒng)計,然后調(diào)查每一個學(xué)生在晚上需要有多長時間才能占用一個水龍頭,最后引導(dǎo)學(xué)生分析每一個學(xué)生使用水龍頭這一情況是否是相互獨立的,通過聯(lián)想中心極限定理以及考慮每個人具有占用水龍頭以及不占用水龍頭兩種情況,得到每人占用水龍頭的概率為0.01。所以,每名學(xué)生是否占用水龍頭能夠被視作一次獨立試驗,其能夠看作是一個n=5000的伯努利試驗,假設(shè)占用水龍頭的學(xué)生個數(shù)為X,那么其滿足X~B(5000,0.1),通過借助中心極限定,使得該問題被快速解決。